Strongly Differentiable Solutions of the Discrete Coagulation-Fragmentation Equation
نویسنده
چکیده
We examine an infinite system of ordinary differential equations that models the coagulation and fragmentation of clusters. In contrast to previous investigations, we allow multiple fragmentation to occur and our analysis does not involve finite-dimensional truncations of the system. Instead, we treat the problem as an infinite-dimensional differential equation, posed in an appropriate Banach space, and apply perturbation results from the theory of strongly continuous semigroups of operators. The existence and uniqueness of physically meaningful solutions are established under minimal restrictions on the fragmentation rates, but with the coagulation rates assumed to be uniformly bounded. PACS (2008): 82.30.Nr, 02.30.Hq, 02.30.Tb, 04.20.Ex
منابع مشابه
Fast Reaction Limit of the Discrete Diffusive Coagulation-fragmentation Equation
The local mass of weak solutions to the discrete diffusive coagulation-fragmentation equation is proved to converge, in the fast reaction limit, to the solution of a nonlinear diffusion equation, the coagulation and fragmentation rates enjoying a detailed balance condition.
متن کاملAnalysis of The Discrete Growth-Fragmentation Equation
The discrete case of the growth-fragmentation equation is not as popular in the literature as the continuous form of it, hence the need to explore the discrete version of this model for some interesting analysis. In this paper, We examine the discrete growth-fragmentation equations. The problem is treated as an infinite-dimensional differential equation, posed in a suitable Banach space. Pertur...
متن کاملExistence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملWeak solutions to the continuous coagulation equation with multiple fragmentation
The existence of weak solutions to the continuous coagulation equation with multiple fragmentation is shown for a class of unbounded coagulation and fragmentation kernels, the fragmentation kernel having possibly a singularity at the origin. This result extends previous ones where either boundedness of the coagulation kernel or no singularity at the origin for the fragmentation kernel was assumed.
متن کاملA VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008